The Crystal and Molecular Structure of Trimethyltin Chloride at 135 K. A Highly Volatile Organotin Polymer

M. BILAYET HOSSAIN, J. L. LEFFERTS, K. C. MOLLOY, D. VAN DER HELM* and J. J. ZUCKERMAN*

Department of Chemistry, University of Oklahoma, Norman, Okla. 73019, U.S.A.

Received May 24,1979

Trimethyltin chloride is a key laboratory starting material and has been studied extensively by spectroscopic methods, yet the solid state structure of this highly toxic, low melting (m. 39.5 °C), volatile (b. 154 "c) material has never been determined because of experimental difficulties. The structure of the homologous trimethyltin fluoride [l] , which is associated through bridging fluorines, is perhaps the most widely quoted organotin structure of all [2] , yet disorder within and between the -F-Sn-F-Sn- chains prevents a satisfactory solution to the anomalous electron density projections recorded at ambient temperatures [3]. Triphenyltin chloride [4] and bromide [5], on the other hand, exist as discrete, monomeric molecules in the crystal [6].

Crystals of trimethyltin chloride are monoclinic, $a = 12.541(8), b = 9.618(11), c = 11.015(11)$ Å, β = 92.62(7)^o, space group P2, and Z = 2. Each asymmetric unit consists of four molecules. The structure was solved from 2183 independent reflections $[2\theta \leq 53^\circ$, MoK α radiation $I > 2\sigma(I)$] recorded at 135 ± 2 K on a Nonius CAD-4 counter diffractometer by the heavy-atom technique, and refined to a final R value of 0.069 (weighted = 0.058). Sublimation of the crystals prevented the measurement of all faces, and thus no corrections for absorp-

*Author to whom correspondence should be addressed.

Fig. 1. The asymmetric unit in the trimethyltin chloride structure. The interchain $d(Sn \cdots C)$ values are greater than 4.1 *A.*

tion could be made. The calculated density is 1.994 $g/cm³$.

The stereochemistry of the asymmetric unit is shown in Fig. 1, along with mean values of the bond distances and angles. The two tin-chlorine distances are not equivalent, with the intramolecular bond [mean value $3.259(5.11)$ Å, although the latter is significantly shorter than the sum of the respective van der Waals radii (3.85 Å) $[11]$. Comparison with the parameters of the recent gas-phase electron diffraction study [12] is shown in Table I along with data from the analogous $[(CH_3)_3SnCl_2]$ ⁻ anion (gegen ion $[Mo_{3}(h^{5}C_{5}H_{5})_{3}S_{4}]^{+}$ which takes an axially distorted, trigonal bipyramidal structure with one Sn-Cl the longest such intramolecular distance yet reported [13] .

The Cl-Sn-Cl-Sn fragment is nearly linear at tin [mean Cl-Sn-Cl angle $176.8(2,3)^{\circ}$] [10], but bent at chlorine [mean angle 150.9(45)'] , imposing a zig-

TABLE I. Comparison with Gas-phase Electron Diffraction

	$d(Sn-C)$	$d(Sn-Cl)$	$\langle C-Sn-C \rangle$	$\langle C-Sn-Cl$	$d(Sn - Cl)$	\langle (Cl-Sn---Cl)
$(CH_3)_3$ SnCl ^a X-ray at 135 K	$2.14(2.6)$ A	$2.434(5, 18)$ A	$117.2(8.52)^{\circ}$	99.5 $(5,25)$ ° intra- $80.5(5,33)$ ° inter-	$3.259(5,11)$ A	$176.8(2.3)^{\circ}$
predicted ^b		∽	118°	99°	3.54	
e.d. at 90 $^{\circ}C^{\circ}$	2.106 ± 0.006	2.351 ± 0.007	$114.9 \pm 1.6^{\circ}$	$103.2 \pm 0.6^{\circ}$		-
$[(CH3)3SnCl2]-$ X-ray at R.T. ^d	2.12	2.572(4) 2.696(3)				-

^aThis work. ^bR. F. Zahrobsky, J. Solid State Chem., 8, 101 (1973). ^cRef. 12. ^dRef. 13.

zag character to the polymeric backbone, as in trimethyltin methoxide. However, in the latter case the trimethyltin moieties are staggered [the methoxyl methyl group eclipses an intermolecularly attached $(CH₃)₃$ Sn methyl] [14], while the trimethyltin units in the $(CH_3)_3$ SnCl chain are eclipsed. Single -Sn--Cl--Sn bridges such as those found here may also appear in the structure of diphenyltin dichloride [15] which has been reinterpreted in terms of chlorine asymmetrically bridging four- and six-coordinated tin atoms (intra- 2.353, inter- 3.78 A) [161.

The intermolecular tin-chlorine association in $(CH₃)₃$ SnCl is apparently disrupted on melting or dissolving in carbon disulfide, as shown by reduced infrared and Raman $\nu(Sn-Cl)$ values [17, 18].

Acknowledgements

Our work is supported by the Office of Naval Research (JJZ) and the National Cancer Institute, DHEW, CA 17562 (DvdH).

References

- H. C. Clark, R. J. O'Brien and J. Trotter, J. *Chem. Sot.,* 2332 (1964).
- 2 J. A. Zubieta and J. J. Zuckerman, Prog. Inorg. Chem., 24, 251 (1978).
- 3 K. Kasuda, Y. Kawasaki, N. Kasai and T. Tanaka, Bull. *Chem. Sot. Jup., 38,* 1216 (1965).
- N. G. Bokii, G. N. Zakharova and Y. T. Struchkov, J. *Struct. Chem. U.S.S.R., 11, 828* (1970).
- H. Preut and F. Huber, *Acta Cryst., B35, 744* (1979).
- The suggestion of a phase transition occurring in triphenyltin chloride between ambient and liquid nitrogen temperatures [4] is based upon a very low value reported for the NQR coupling constant at 77 K $[7]$. However, this signal could not be reproduced by later workers [8]. The close similarity of the Mössbauer parameters at 80, 110 and 295 K strongly suggest that triphenyltin chloride is isostructural over this temperature range *[91.*
- 7 T. S. Srivastava, J. *Organomet. Chem., 10, 373* (1967).
- 8 N. W. G. Debye and M. Linzer, *J. Chem. Phys., 61,477O* (1974).
- 9 G. M. Bancroft, K. D. Butler and T. K. Sham, *J. Chem. Sot. Dalton l'kans., 1483* (1975).
- 0 Figures within parentheses refer to the standard deviation of a single observation and the r.m.s. deviation of the four independent measurements, respectively.
- A. Bondi, *J. Phys.* Chem., 68,441 (1964). 11
- B. Beagley, K. McAloon and J. M. Freeman, *Actu Cryst.,* 12 *830,444* (1974).
- P. J. Vergamini, H. Varenkamp and L. F. Dahl, J. *Am.* 13 *Chem. Soc., 93, 6327 (1971).*
- 4 A. M. Domingos and G. M. Sheldrick, *Acta Cryst.*, *B30*, 519 (1974).
- P. T. Greene and R. F. Bryan, J. *Chem. Sot. A, 2549* 15 (1971).
- N. G. Bokii, Yu. T. Struchkov and A. K. Prokofiev, *J.* 16 *Struct. Chem. USSR, 13,619* (1972).
- H. Kriegsmann and S. Pischtschan, Z. *Anorg. Chem., 308,* 17 *212* (1961).
- 8 Reports of an earlier X-ray structure by A. G. Davies, H. J. Milledge and D. C. Puxley showing a fivecoordinated structure bent at tin have been quoted in the literature [19], but never published.
- N. W. Alcock and J. F. Sawyer, J. *Chem. Sot. Dalton* 19 *Tkans.,* 1090 (1977); *M.T.P. Znternat. Rev. Sci., 4. 280* (1972); R. V. Parish and R. H. Platt, *Znorg. Chim. Acta, 4, 65 (1970).*